Books by "Board on Chemical Sciences and Technology"

6 books found

Determining Core Capabilities in Chemical and Biological Defense Science and Technology

Determining Core Capabilities in Chemical and Biological Defense Science and Technology

by National Research Council, Division on Earth and Life Studies, Board on Life Sciences, Board on Chemical Sciences and Technology, Committee on Determining Core Capabilities in Chemical and Biological Defense Research and Development

2013 · National Academies Press

The goal of the U.S. Department of Defense's (DoD's) Chemical and Biological Defense Program (CBDP) is to provide support and world-class capabilities enabling he U.S. Armed Forces to fight and win decisively in chemical, biological, radiological, and nuclear (CBRN) environments. To accomplish this objective, the CBDP must maintain robust science and technology capabilities to support the research, development, testing, and evaluation required for the creation and validation of the products the program supplies. The threat from chemical and biological attack evolves due to the changing nature of conflict and rapid advances in science and technology (S&T), so the core S&T capabilities that must be maintained by the CBDP must also continue to evolve. In order to address the challenges facing the DoD, the Deputy Assistant Secretary of Defense (DASD) for Chemical and Biological Defense (CBD) asked the National Research Council (NRC) to conduct a study to identify the core capabilities in S&T that must be supported by the program. The NRC Committee on Determining Core Capabilities in Chemical and Biological Defense Research and Development examined the capabilities necessary for the chemical and biological defense S&T program in the context of the threat and of the program's stated mission and priorities. Determining Core Capabilities in Chemical and Biological Defense Science and Technology contains the committee's findings and recommendations. It is intended to assist the DASD CBD in determining the best strategy for acquiring, developing, and/or maintaining the needed capabilities.

Graduate Education in the Chemical Sciences

Graduate Education in the Chemical Sciences

by National Research Council, Commission on Physical Sciences, Mathematics, and Applications, Board on Chemical Sciences and Technology, Chemical Sciences Roundtable

2000 · National Academies Press

Graduate Education in the Chemical Sciences is a summary of the December 1999 workshop, "Graduate Education in the Chemical Sciences: Issues for the 21st Century." This workshop discussed the various features of graduate education in chemical science and technology. Using case histories and their individual experiences, speakers examined the current status of graduate education in the chemical sciences, identified problems and opportunities, and discussed possible strategies for improving the system. The discussion was oriented toward the goal of generating graduates who are well prepared to advance the chemical sciences in academia, government, and industry in the next 5 to 10 years.

Improving Measures of Science, Technology, and Innovation

Improving Measures of Science, Technology, and Innovation

by National Research Council, Policy and Global Affairs, Board on Science, Technology, and Economic Affairs, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Panel on Developing Science, Technology, and Innovation Indicators for the Future

2012 · National Academies Press

The National Center for Science and Engineering Statistics (NCSES), at the U.S. National Foundation, is 1 of 14 major statistical agencies in the federal government, of which at least 5 collect relevant information on science, technology, and innovation activities in the United States and abroad. The America COMPETES Reauthorization Act of 2010 expanded and codified NCSES's role as a U.S. federal statistical agency. Important aspects of the agency's mandate include collection, acquisition, analysis, and reporting and dissemination of data on research and development trends, on U.S. competitiveness in science, technology, and research and development, and on the condition and progress of U.S. science, technology, engineering, and mathematics (STEM) education. Improving Measures of Science, Technology and Innovation: Interim Report examines the status of the NCSES's science, technology, and innovation (STI) indicators. This report assesses and provides recommendations regarding the need for revised, refocused, and newly developed indicators designed to better reflect fundamental and rapid changes that are reshaping global science, technology and innovation systems. The book also determines the international scope of STI indicators and the need for developing new indicators that measure developments in innovative activities in the United States and abroad, and Offers foresight on the types of data, metrics and indicators that will be particularly influential in evidentiary policy decision-making for years to come. In carrying out its charge, the authoring panel undertook a broad and comprehensive review of STI indicators from different countries, including Japan, China, India and several countries in Europe, Latin America and Africa. Improving Measures of Science, Technology, and Innovation makes recommendations for near-term action by NCSES along two dimensions: (1) development of new policy-relevant indicators that are based on NCSES survey data or on data collections at other statistical agencies; and (2) exploration of new data extraction and management tools for generating statistics, using automated methods of harvesting unstructured or scientometric data and data derived from administrative records.

Women in the Chemical Workforce

Women in the Chemical Workforce

by National Research Council, Commission on Physical Sciences, Mathematics, and Applications, Board on Chemical Sciences and Technology, Chemical Sciences Roundtable

2000 · National Academies Press

For a period of history no women worked outside the home. Bust as years have gone by and society has changed, Women are working varying jobs every day. They are, however, underrepresented in some sectors of jobs. This includes women in the engineering and science fields. To matters worse, women do not ascend the career ladder as fast as or as far as men do. The impact of this and related problems for science, the academic enterprise, the U.S. economy, and global economic competitiveness have been recently examined. The Chemical Sciences Roundtable evaluate that the demographics of the workforce and the implications for science and society vary, depending on the field of science or engineering. The roundtable has organized a workshop, "Women in the Chemical Workforce," to address issues pertinent to the chemical and chemical engineering workforce as a whole, with an emphasis on the advancement of women. Women in the Chemical Workforce: A Workshop Report to the Chemical Sciences Roundtable includes reports regarding the workshop's three sessionsâ€"Context and Overview, Opportunities for Change, and Conditions for Successâ€"as well as presentations by invited speakers, discussions within breakout groups, oral reports from each group.

Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education

Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education

by National Research Council, Division of Behavioral and Social Sciences and Education, Board on Science Education, Planning Committee on Evidence on Selected Innovations in Undergraduate STEM Education

2011 · National Academies Press

Numerous teaching, learning, assessment, and institutional innovations in undergraduate science, technology, engineering, and mathematics (STEM) education have emerged in the past decade. Because virtually all of these innovations have been developed independently of one another, their goals and purposes vary widely. Some focus on making science accessible and meaningful to the vast majority of students who will not pursue STEM majors or careers; others aim to increase the diversity of students who enroll and succeed in STEM courses and programs; still other efforts focus on reforming the overall curriculum in specific disciplines. In addition to this variation in focus, these innovations have been implemented at scales that range from individual classrooms to entire departments or institutions. By 2008, partly because of this wide variability, it was apparent that little was known about the feasibility of replicating individual innovations or about their potential for broader impact beyond the specific contexts in which they were created. The research base on innovations in undergraduate STEM education was expanding rapidly, but the process of synthesizing that knowledge base had not yet begun. If future investments were to be informed by the past, then the field clearly needed a retrospective look at the ways in which earlier innovations had influenced undergraduate STEM education. To address this need, the National Research Council (NRC) convened two public workshops to examine the impact and effectiveness of selected STEM undergraduate education innovations. This volume summarizes the workshops, which addressed such topics as the link between learning goals and evidence; promising practices at the individual faculty and institutional levels; classroom-based promising practices; and professional development for graduate students, new faculty, and veteran faculty. The workshops concluded with a broader examination of the barriers and opportunities associated with systemic change.

An Assessment of the National Institute of Standards and Technology Material Measurement Laboratory

An Assessment of the National Institute of Standards and Technology Material Measurement Laboratory

by National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Laboratory Assessments Board, Committee on NIST Technical Programs, Panel on Review of the Material Measurement Laboratory at the National Institute of Standards and Technology

2017 · National Academies Press

An Assessment of the National Institute of Standards and Technology Material Measurement Laboratory: Fiscal Year 2017 assesses the scientific and technical work performed by the National Institute of Standards (NIST). This publication reviews technical reports and technical program descriptions prepared by NIST staff summarizes the findings of the authoring panel.