2 books found
This book is a collection of essays written by the very scientists and engineers who have led, and continue to lead, the scientific quest known as SETI, the search for extraterrestrial intelligence. Divided into three parts, the first section, ‘The Spirit of SETI Past’, written by the surviving pioneers of this then emerging discipline, reviews the major projects undertaken during the first 50 years of SETI science and the results of that research. In the second section, ‘The Spirit of SETI Present’, the present-day science and technology is discussed in detail, providing the technical background to contemporary SETI instruments, experiments, and analytical techniques, including the processing of the received signals to extract potential alien communications. In the third and final section, ‘The Spirit of SETI Future’, the book looks ahead to the possible directions that SETI will take in the next 50 years, addressing such important topics as interstellar message construction, the risks and assumptions of interstellar communications, when we might make contact, what aliens might look like and what is likely to happen in the aftermath of such a contact.
"Conventional wisdom suggests aircraft midair collisions to be random events, governed by the laws of Brownian Motion, and best analyzed by stochastic methods. An alternative hypothesis, that such accidents are deterministic in nature, and that specific factors leading to midair collisions can be identified and mitigated, forms the basis for this Dissertation. A predictive model using case control theory is developed for assessing Risk Index, a criterion measure of midair collision likelihood, for any General Aviation flight, actual or hypothetical. Generating the model requires statistical validation of two independent near midair collision databases, and identifying within them those aircraft, aircrew and airspace characteristics most closely associated with collision risk. Calibration of the model shows reality to fall somewhere between the stochastic and deterministic assumptions. A statistically significant correlation is found between predicted and observed Risk Index for a sizable random sample of flights, with a resulting Coefficient of Determination of 0.25. This suggests that we have identified 25% of the source of variance in midair collision risk, the remaining 75% being random. Therefore we can realistically hope to reduce midair collisions by roughly 25%. Strategies for mitigating the identified causal factors are proposed. Measures to reduce the random, remaining 75% of collision risk are also explored. However, these appear to require a significant overhaul of Air Traffic Control procedures, which must be approached with caution, to guard against the attendant possibility of curtailing capacity in the Air Transportation System."--Page 1-2