7 books found
A close-up look at this historic Massachusetts landmark, including photos and illustrations. Though Salem is located on Massachusetts's scenic North Shore, its history has not always been picturesque. The "Witch City," as it is internationally known, is home to numerous landmarks dedicated to the notorious trials of 1692. Of these, the Witch House is perhaps most significant—the former residence of Judge Jonathan Corwin, whose court ordered the execution of twenty men and women. It was here that Corwin examined the unfortunate accused. There is, however, more to this ancient building than its most famous occupant. From wars and death to prosperity and progress, this book searches beneath the beams and studs of the Witch House—to find the stories of those who called this place home.
This monograph considers several well-known mathematical theorems and asks the question, “Why prove it again?” while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different. While a number of books have examined alternative proofs of individual theorems, this is the first that presents comparative case studies of other methods for a variety of different theorems. The author begins by laying out the criteria for distinguishing among proofs and enumerates reasons why new proofs have, for so long, played a prominent role in mathematical practice. He then outlines various purposes that alternative proofs may serve. Each chapter that follows provides a detailed case study of alternative proofs for particular theorems, including the Pythagorean Theorem, the Fundamental Theorem of Arithmetic, Desargues’ Theorem, the Prime Number Theorem, and the proof of the irreducibility of cyclotomic polynomials. Why Prove It Again? will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians. Additionally, teachers will find it to be a useful source of alternative methods of presenting material to their students.
by John Harrison
2009 · Cambridge University Press
The sheer complexity of computer systems has meant that automated reasoning, i.e. the ability of computers to perform logical inference, has become a vital component of program construction and of programming language design. This book meets the demand for a self-contained and broad-based account of the concepts, the machinery and the use of automated reasoning. The mathematical logic foundations are described in conjunction with practical application, all with the minimum of prerequisites. The approach is constructive, concrete and algorithmic: a key feature is that methods are described with reference to actual implementations (for which code is supplied) that readers can use, modify and experiment with. This book is ideally suited for those seeking a one-stop source for the general area of automated reasoning. It can be used as a reference, or as a place to learn the fundamentals, either in conjunction with advanced courses or for self study.