6 books found
Lists name and unit of service.
History-making can be used both to bolster and to contest the legitimacy of established institutions and canons. Excluded Ancestors, Inventible Traditions seeks to widen the anthropological past and, in doing so, to invigorate contemporary anthropological practice. In the past decade, anthropologists have become increasingly aware of the ways in which participation in professional anthropology has depended and continues to depend on categorical boundaries of race, class, gender, citizenship, institutional and disciplinary affiliation, and English-language proficiency. Historians of anthropology play a crucial role interrogating such boundaries; as they do, they make newly available the work of anthropologists who have been ignored. Excluded Ancestors, Inventible Traditions focuses on little-known scholars who contributed to the anthropological work of their time, such as John William Jackson, the members of the Hampton Folk-Lore Society, Charlotte Gower Chapman, and Lucie Varga. In addition, essays on Marius Barbeau and Sol Tax present figures who were centrally located in the anthropologies of their day. A final essay analyzes notions of "the canon" and considers the place of a classic ethnographic area, highland New Guinea, in anthropological canon-formation.
The need to transmit and store massive amounts of data reliably and without error is a vital part of modern communications systems. Error-correcting codes play a fundamental role in minimising data corruption caused by defects such as noise, interference, crosstalk and packet loss. This book provides an accessible introduction to the basic elements of algebraic codes, and discusses their use in a variety of applications. The author describes a range of important coding techniques, including Reed-Solomon codes, BCH codes, trellis codes, and turbocodes. Throughout the book, mathematical theory is illustrated by reference to many practical examples. The book was first published in 2003 and is aimed at graduate students of electrical and computer engineering, and at practising engineers whose work involves communications or signal processing.
by Richard G. Hewlett, Jack M. Holl, Roger M. Anders
2021 · University of California Press
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1989.
by Richard F. Tinder
2009 · Morgan & Claypool Publishers
Asynchronous Sequential Machine Design and Analysis provides a lucid, in-depth treatment of asynchronous state machine design and analysis presented in two parts: Part I on the background fundamentals related to asynchronous sequential logic circuits generally, and Part II on self-timed systems, high-performance asynchronous programmable sequencers, and arbiters. Part I provides a detailed review of the background fundamentals for the design and analysis of asynchronous finite state machines (FSMs). Included are the basic models, use of fully documented state diagrams, and the design and characteristics of basic memory cells and Muller C-elements. Simple FSMs using C-elements illustrate the design process. The detection and elimination of timing defects in asynchronous FSMs are covered in detail. This is followed by the array algebraic approach to the design of single-transition-time machines and use of CAD software for that purpose, one-hot asynchronous FSMs, and pulse mode FSMs. Part I concludes with the analysis procedures for asynchronous state machines. Part II is concerned mainly with self-timed systems, programmable sequencers, and arbiters. It begins with a detailed treatment of externally asynchronous/internally clocked (or pausable) systems that are delay-insensitive and metastability-hardened. This is followed by defect-free cascadable asynchronous sequencers, and defect-free one-hot asynchronous programmable sequencers--their characteristics, design, and applications. Part II concludes with arbiter modules of various types, those with and without metastability protection, together with applications. Presented in the appendices are brief reviews covering mixed-logic gate symbology, Boolean algebra, and entered-variable K-map minimization. End-of-chapter problems and a glossary of terms, expressions, and abbreviations contribute to the reader's learning experience. Five productivity tools are made available specifically for use with this text and briefly discussed in the Preface. Table of Contents: I: Background Fundamentals for Design and Analysis of Asynchronous State Machines / Introduction and Background / Simple FSM Design and Initialization / Detection and Elimination of Timing Defects in Asynchronous FSMs / Design of Single Transition Time Machines / Design of One-Hot Asynchronous FSMs / Design of Pulse Mode FSMs / Analysis of Asynchronous FSMs / II: Self-Timed Systems/ Programmable Sequencers, and Arbiters / Externally Asynchronous/Internally Clocked Systems / Cascadable Asynchronous Programmable Sequencers (CAPS) and Time-Shared System Design / Asynchronous One-Hot Programmable Sequencer Systems / Arbiter Modules