4 books found
The Second Creation is a dramatic--and human--chronicle of scientific investigators at the last frontier of knowledge. Robert Crease and Charles Mann take the reader on a fascinating journey in search of "unification" with brilliant scientists such as Niels Bohr, Max Planck, Albert Einstein, Erwin Schrödinger, Richard Feynman, Murray Gell-Mann, Sheldon Glashow, Steven Weinberg, and many others. They provide the definitive and highly entertaining story of the development of modern physics, and the human story of the physicists who set out to find the "theory of everything."
In 1543, Nicolaus Copernicus publicly defended his hypothesis that the earth is a planet and the sun a body resting near the center of a finite universe. But why did Copernicus make this bold proposal? And why did it matter? The Copernican Question reframes this pivotal moment in the history of science, centering the story on a conflict over the credibility of astrology that erupted in Italy just as Copernicus arrived in 1496. Copernicus engendered enormous resistance when he sought to protect astrology by reconstituting its astronomical foundations. Robert S. Westman shows that efforts to answer the astrological skeptics became a crucial unifying theme of the early modern scientific movement. His interpretation of this long sixteenth century, from the 1490s to the 1610s, offers a new framework for understanding the great transformations in natural philosophy in the century that followed.
An Introduction to the Standard Model of Particle Physics familiarizes readers with what is considered tested and accepted and in so doing, gives them a grounding in particle physics in general. Whenever possible, Dr. Mann takes an historical approach showing how the model is linked to the physics that most of us have learned in less challenging areas. Dr. Mann reviews special relativity and classical mechanics, symmetries, conservation laws, and particle classification; then working from the tested paradigm of the model itself, he: Describes the Standard Model in terms of its electromagnetic, strong, and weak components Explores the experimental tools and methods of particle physics Introduces Feynman diagrams, wave equations, and gauge invariance, building up to the theory of Quantum Electrodynamics Describes the theories of the Strong and Electroweak interactions Uncovers frontier areas and explores what might lie beyond our current concepts of the subatomic world Those who work through the material will develop a solid command of the basics of particle physics. The book does require a knowledge of special relativity, quantum mechanics, and electromagnetism, but most importantly it requires a hunger to understand at the most fundamental level: why things exist and how it is that anything happens. This book will prepare students and others for further study, but most importantly it will prepare them to open their minds to the mysteries that lie ahead. Ultimately, the Large Hadron Collider may prove the model correct, helping so many realize their greatest dreams ... or it might poke holes in the model, leaving us to wonder an even more exciting possibility: that the answers lie in possibilities so unique that we have not even dreamt of them.
by Alexander N. Petrov, Sergei M. Kopeikin, Robert R. Lompay, Bayram Tekin
2017 · Walter de Gruyter GmbH & Co KG
By focusing on the mostly used variational methods, this monograph aspires to give a unified description and comparison of various ways of constructing conserved quantities for perturbations and to study symmetries in general relativity and modified theories of gravity. The main emphasis lies on the field-theoretical covariant formulation of perturbations, the canonical Noether approach and the Belinfante procedure of symmetrisation. The general formalism is applied to build the gauge-invariant cosmological perturbation theory, conserved currents and superpotentials to describe physically important solutions of gravity theories. Meticulous attention is given to the construction of conserved quantities in asymptotically-flat spacetimes as well as in asymptotically constant curvature spacetimes such as the Anti-de Sitter space. Significant part of the book can be used in graduate courses on conservation laws in general relativity. THE SERIES: DE GRUYTER STUDIES IN MATHEMATICAL PHYSICS The series is devoted to the publication of monographs and high-level texts in mathematical physics. They cover topics and methods in fields of current interest, with an emphasis on didactical presentation. The series will enable readers to understand, apply, and develop further, with sufficient rigor, mathematical methods to given problems in physics. The works in this series are aimed at advanced students and researchers in mathematical and theoretical physics. They can also serve as secondary reading for lectures and seminars at advanced levels.