Books by "Themistocles M. Rassias"

5 books found

Differential Geometry, Calculus of Variations, and Their Applications

Differential Geometry, Calculus of Variations, and Their Applications

by George M. Rassias, Themistocles M. Rassias

2023 · CRC Press

This book contains a series of papers on some of the longstanding research problems of geometry, calculus of variations, and their applications. It is suitable for advanced graduate students, teachers, research mathematicians, and other professionals in mathematics.

Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry

by M.-E. Craioveanu, Mircea Puta, Themistocles M. Rassias

2001 · Springer Science & Business Media

It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.

Nonlinear Analysis

Nonlinear Analysis

by Themistocles M. Rassias

1987 · World Scientific

http://www.worldscientific.com/worldscibooks/10.1142/0295

Stability of Functional Equations in Random Normed Spaces

Stability of Functional Equations in Random Normed Spaces

by Yeol Je Cho, Themistocles M. Rassias, Reza Saadati

2013 · Springer Science & Business Media

This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research. The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.

Stability of Functional Equations in Several Variables

Stability of Functional Equations in Several Variables

by D.H. Hyers, G. Isac, Themistocles M. Rassias

1998 · Springer Science & Business Media

The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.