4 books found
Statistical performance evaluation has assumed an increasing amount of im portance as we seek to design more and more sophisticated communication and information processing systems. The ability to predict a proposed system's performance without actually having to construct it is an extremely cost effec tive design tool. This book is meant to be a first-year graduate level introduction to the field of statIstical performance evaluation. As such, it covers continuous time queueing theory (chapters 1-4), stochastic Petri networks (chapter 5), and discrete time queueing theory (chapter 6). There is a short appendix at the end of the book that reviews basic probability theory. At Stony Brook, this mate rial would be covered in the second half of a two course sequence (the first half is an applied computer networks course). Students seem to be encouraged to pursue the analytical material of this book if they first have some idea of the potential applications.
by Thomas G. Robertazzi
2012 · Springer Science & Business Media
Statistical performance evaluation has assumed an increasing amount of importance as we seek to design more and more sophisticated communi cation and information processing systems. The ability to predict a pro posed system's performance without actually having to construct it is an extremely cost effective design tool. This book is meant to be a first year graduate level introduction to the field of statistical performance evaluation. As such, it covers queueing theory (chapters 1-4) and stochastic Petri networks (chapter 5). There is a short appendix at the end of the book which reviews basic probability theory. At Stony Brook, this material would be covered in the second half of a two course sequence (the first half is a computer networks course using a text such as Schwartz's Telecommunications Networks). Students seem to be encouraged to pursue the analytical material of this book if they first have some idea of the potential applications. I am grateful to B.L. Bodnar, J. Blake, J.S. Emer, M. Garrett, W. Hagen, Y.C. Jenq, M. Karol, J.F. Kurose, S.-Q. Li, A.C. Liu, J. McKenna, H.T. Mouftah and W.G. Nichols, I.Y. Wang, the IEEE and Digital Equip ment Corporation for allowing previously published material to appear in this book.
This useful volume adopts a balanced approach between technology and mathematical modeling in computer networks, covering such topics as switching elements and fabrics, Ethernet, and ALOHA design. The discussion includes a variety of queueing models, routing, protocol verification and error codes and divisible load theory, a new modeling technique with applications to grids and parallel and distributed processing. Examples at the end of each chapter provide ample material for practice. This book can serve as an text for an undergraduate or graduate course on computer networks or performance evaluation in electrical and computer engineering or computer science.
This book describes the complete iWarp system, from instruction-level parallelism to final parallel applications. The authors present a range of issues that must be considered to get a real system into practice. foreword by Gordon Bell and afterword by H.T. Kung Although researchers have proposed many mechanisms and theories for parallel systems, only a few have actually resulted in working computing platforms. The iWarp is an experimental parallel system that was designed and built jointly by Carnegie Mellon University and Intel Corporation. The system is based on the idea of integrating a VLIW processor and a sophisticated fine-grained communication system on a single chip. This book describes the complete iWarp system, from instruction-level parallelism to final parallel applications. The authors present a range of issues that must be considered to get a real system into practice. They also provide a start-to-finish history of the project, including what was done right and what was done wrong, that will be of interest to anyone who studies or builds computer systems.